The interplay between discrete noise and nonlinear chemical kinetics in a signal amplification cascade.
نویسندگان
چکیده
We used various analytical and numerical techniques to elucidate signal propagation in a small enzymatic cascade which is subjected to external and internal noises. The nonlinear character of catalytic reactions, which underlie protein signal transduction cascades, renders stochastic signaling dynamics in cytosol biochemical networks distinct from the usual description of stochastic dynamics in gene regulatory networks. For a simple two-step enzymatic cascade which underlies many important protein signaling pathways, we demonstrated that the commonly used techniques such as the linear noise approximation and the Langevin equation become inadequate when the number of proteins becomes too low. Consequently, we developed a new analytical approximation, based on mixing the generating function and distribution function approaches, to the solution of the master equation that describes nonlinear chemical signaling kinetics for this important class of biochemical reactions. Our techniques work in a much wider range of protein number fluctuations than the methods used previously. We found that under certain conditions the burst phase noise may be injected into the downstream signaling network dynamics, resulting possibly in unusually large macroscopic fluctuations. In addition to computing first and second moments, which is the goal of commonly used analytical techniques, our new approach provides the full time-dependent probability distributions of the colored non-Gaussian processes in a nonlinear signal transduction cascade.
منابع مشابه
Amplification of noise in a cascade chemical reaction.
Networks of chemical reactions have been given much attention recently. However, dynamical aspects of such networks remain to be elucidated. In this paper, we study a cascade chemical reaction, consisting of a series of downstream-coupled Brusselators. Along the cascade of reaction, small fluctuations naturally existing in the concentration of chemical species are amplified. Such amplification ...
متن کاملStochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation.
Many regulatory molecules are present in low copy numbers per cell so that significant random fluctuations emerge spontaneously. Because cell viability depends on precise regulation of key events, such signal noise has been thought to impose a threat that cells must carefully eliminate. However, the precision of control is also greatly affected by the regulatory mechanisms' capacity for sensiti...
متن کاملPervasive white and colored noise removing from magnetotelluric time series
Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...
متن کاملOptimum parameters of nonlinear integrator using design of experiments based on Taguchi method
For many physical systems like vehicles, acceleration can be easily measured for the respective states. However, the outputs are usually affected by stochastic noise disturbance. The mentioned systems are often sensitive to noise and structural uncertainties. Furthermore, it is very difficult to estimate the multiple integrals of the signal, acceleration to velocity and velocity to position. In...
متن کاملStochastic amplification in epidemics.
The role of stochasticity and its interplay with nonlinearity are central current issues in studies of the complex population patterns observed in nature, including the pronounced oscillations of wildlife and infectious diseases. The dynamics of childhood diseases have provided influential case studies to develop and test mathematical models with practical application to epidemiology, but are a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 125 15 شماره
صفحات -
تاریخ انتشار 2006